Cross-talk between histone H3 tails produces cooperative nucleosome acetylation.

نویسندگان

  • Shanshan Li
  • Michael A Shogren-Knaak
چکیده

Acetylation of histone proteins by the yeast Spt-Ada-Gcn5-acetyltansferase (SAGA) complex has served as a paradigm for understanding how posttranslational modifications of chromatin regulate eukaryotic gene expression. Nonetheless, it has been unclear to what extent the structural complexity of the chromatin substrate modulates SAGA activity. By using chromatin model systems, we have found that SAGA-mediated histone acetylation is highly cooperative (cooperativity constant of 1.97 +/- 0.15), employing the binding of multiple noncontiguous nucleosomes to facilitate maximal acetylation activity. Studies with various chromatin substrates, including those containing novel asymmetric histone octamers, indicate that this cooperativity occurs only when both H3 histone tails within a nucleosome are properly oriented and unacetylated. We propose that modulation of maximal SAGA activity through this dual-tail recognition could facilitate coregulation of spatially proximal genes by promoting cooperative nucleosome acetylation between genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms

There is a close relationship between histone acetylation and ATP-dependent chromatin remodeling that is not fully understood. We show that acetylation of histone H3 tails affects SWI/SNF (mating type switching/ sucrose non fermenting) and RSC (remodels structure of chromatin) remodeling in several distinct ways. Acetylation of the histone H3 N-terminal tail facilitated recruitment and nucleoso...

متن کامل

Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast

In Saccharomyces cerevisiae, known histone acetylation sites regulating gene activity are located in the N-terminal tails protruding from the nucleosome core. We report lysine 56 in histone H3 as a novel acetylation site that is located in the globular domain, where it extends toward the DNA major groove at the entry-exit points of the DNA superhelix as it wraps around the nucleosome. We show t...

متن کامل

The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles.

The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray sca...

متن کامل

H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation

Acetylation of lysine residues in histone tails is associated with gene transcription. Because histone tails are structurally flexible and intrinsically disordered, it is difficult to experimentally determine the tail conformations and the impact of acetylation. In this work, we performed simulations to sample H3 tail conformations with and without acetylation. The results show that irrespectiv...

متن کامل

Introducing multiple sites of acetylation to histone H3 via nonsense suppression

A common post-translational modification (PTM) of proteins is lysine acetylation. This is an especially ubiquitous PTM in the histones of chromatin, and is important for helping to regulate both structural and mechanistic aspects of chromatin. The fundamental unit of chromatin is called the nucleosome and is made up of DNA that wraps around a histone protein octamer. Protruding from the nucleos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 47  شماره 

صفحات  -

تاریخ انتشار 2008